A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables
نویسندگان
چکیده
Light Detection and Ranging (LiDAR) is a remote sensor able to extract three-dimensional information. Environmental models in forest areas have been benefited by the use of LiDAR-derived information in the last years. A multiple linear regression (MLR) with previous stepwise feature selection is the most common method in the literature to develop those models. MLR defines the relation between the set of field measurements and the statistics extracted from a LiDAR flight. Machine learning has emerged as a suitable tool to improve classic stepwise MLR results on LiDAR. Unfortunately, few studies have been proposed to compare the quality of the multiple machine learning approaches. This paper presents a comparison between the classic MLR-based methodology and regression techniques in machine learning (neural networks, support vector machines, nearest neighbour, ensembles such as random forests) with special emphasis on regression trees. The selected techniques are applied to real LiDAR data from two areas in the province of Lugo (Galizia, Spain). The results confirm that classic MLR is outperformed by machine learning techniques and concretely, our experiments suggest that Support Vector Regression with Gaussian kernels statistically outperforms the rest of techniques.
منابع مشابه
Improving models for environmental applications of LiDAR: Novel approaches based on soft computing
This work proposes novel methodologies to improve the use of Light Detection And Ranging (LiDAR) for environmental purposes, especially for thematic mapping (LiDAR only or fused with other remote sensors) and the estimation of forest variables. The methodologies make use of well-known techniques from soft computing (machine learning and evolutionary computation) and their adaptation to develop ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملDeciduous Forest Structure Estimated with LIDAR-Optimized Spectral Remote Sensing
Coverage and frequency of remotely sensed forest structural information would benefit from single orbital platforms designed to collect sufficient data. We evaluated forest structural information content using single-date Hyperion hyperspectral imagery collected over full-canopy oak-hickory forests in the Ozark National Forest, Arkansas, USA. Hyperion spectral derivatives were used to develop m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 167 شماره
صفحات -
تاریخ انتشار 2015